A note on skew Lie product of prime ring with involution

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On centralizers of prime rings with involution

‎Let $R$ be a ring with involution $*$‎. ‎An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$‎. ‎The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.

متن کامل

A Note on Skew Derivations in Prime Rings

Let m,n, r be nonzero fixed positive integers, R a 2-torsion free prime ring, Q its right Martindale quotient ring, and L a non-central Lie ideal of R. Let D : R −→ R be a skew derivation of R and E(x) = D(xm+n+r)−D(xm)xn+r − xmD(xn)xr − xm+nD(xr). We prove that if E(x) = 0 for all x ∈ L, then D is a usual derivation of R or R satisfies s4(x1, . . . , x4), the standard identity of degree 4.

متن کامل

A note on power values of generalized derivation in prime ring and noncommutative Banach algebras

Let $R$ be a prime ring with extended centroid $C$, $H$ a generalized derivation of $R$ and $ngeq 1$ a fixed integer. In this paper we study the situations: (1) If $(H(xy))^n =(H(x))^n(H(y))^n$ for all $x,yin R$; (2) obtain some related result in case $R$ is a noncommutative Banach algebra and $H$ is continuous or spectrally bounded.

متن کامل

on centralizers of prime rings with involution

‎let $r$ be a ring with involution $*$‎. ‎an additive mapping $t:rto r$ is called a left(respectively right) centralizer if $t(xy)=t(x)y$ (respectively $t(xy)=xt(y)$) for all $x,yin r$‎. ‎the purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.

متن کامل

A Note on Diffusion Limits of Chaotic Skew Product Flows

We provide an explicit rigorous derivation of a diffusion limit – a stochastic differential equation with additive noise – from a deterministic skewproduct flow. This flow is assumed to exhibit time-scale separation and has the form of a slowly evolving system driven by a fast chaotic flow. Under mild assumptions on the fast flow, we prove convergence to a stochastic differential equation as th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Miskolc Mathematical Notes

سال: 2020

ISSN: 1787-2405,1787-2413

DOI: 10.18514/mmn.2020.2644